Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold
Kieran Murphy, Carlos Esteves, Varun Jampani, Srikumar Ramalingam, Ameesh Makadia
6/10/2021
Keywords: Camera Parameter Estimation, Fundamentals
Venue: ICML 2021
Bibtex:
@inproceedings{murphy2021implicitpdf,
publisher = {PMLR},
booktitle = {International Conference on Machine Learning (ICML)},
author = {Kieran Murphy and Carlos Esteves and Varun Jampani and Srikumar Ramalingam and Ameesh Makadia},
title = {Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold},
year = {2021},
url = {http://arxiv.org/abs/2106.05965v1},
entrytype = {inproceedings},
id = {murphy2021implicitpdf}
}
Abstract
Single image pose estimation is a fundamental problem in many vision and robotics tasks, and existing deep learning approaches suffer by not completely modeling and handling: i) uncertainty about the predictions, and ii) symmetric objects with multiple (sometimes infinite) correct poses. To this end, we introduce a method to estimate arbitrary, non-parametric distributions on SO(3). Our key idea is to represent the distributions implicitly, with a neural network that estimates the probability given the input image and a candidate pose. Grid sampling or gradient ascent can be used to find the most likely pose, but it is also possible to evaluate the probability at any pose, enabling reasoning about symmetries and uncertainty. This is the most general way of representing distributions on manifolds, and to showcase the rich expressive power, we introduce a dataset of challenging symmetric and nearly-symmetric objects. We require no supervision on pose uncertainty -- the model trains only with a single pose per example. Nonetheless, our implicit model is highly expressive to handle complex distributions over 3D poses, while still obtaining accurate pose estimation on standard non-ambiguous environments, achieving state-of-the-art performance on Pascal3D+ and ModelNet10-SO(3) benchmarks.
Citation Graph
(Double click on nodes to open corresponding papers' pages)
(Double click on nodes to open corresponding papers' pages)
* Showing citation graph for papers within our database. Data retrieved from Semantic Scholar. For full citation graphs, visit ConnectedPapers.