NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown Illumination
Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul Debevec, William T. Freeman, Jonathan T. Barron
6/3/2021
Keywords: Editable, Material/Lighting Estimation, Data-Driven Method
Venue: ARXIV 2021
Bibtex:
@article{zhang2021nerfactor,
author = {Zhang, Xiuming and Srinivasan, Pratul P. and Deng, Boyang and Debevec, Paul and Freeman, William T. and Barron, Jonathan T.},
title = {NeRFactor: Neural Factorization of Shape and Reflectance under an Unknown Illumination},
year = {2021},
issue_date = {December 2021},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {40},
number = {6},
issn = {0730-0301},
url = {https://doi.org/10.1145/3478513.3480496},
doi = {10.1145/3478513.3480496},
journal = {ACM Trans. Graph.},
month = {dec},
articleno = {237},
numpages = {18}
}
Abstract
We address the problem of recovering the shape and spatially-varying reflectance of an object from posed multi-view images of the object illuminated by one unknown lighting condition. This enables the rendering of novel views of the object under arbitrary environment lighting and editing of the object's material properties. The key to our approach, which we call Neural Radiance Factorization (NeRFactor), is to distill the volumetric geometry of a Neural Radiance Field (NeRF) [Mildenhall et al. 2020] representation of the object into a surface representation and then jointly refine the geometry while solving for the spatially-varying reflectance and the environment lighting. Specifically, NeRFactor recovers 3D neural fields of surface normals, light visibility, albedo, and Bidirectional Reflectance Distribution Functions (BRDFs) without any supervision, using only a re-rendering loss, simple smoothness priors, and a data-driven BRDF prior learned from real-world BRDF measurements. By explicitly modeling light visibility, NeRFactor is able to separate shadows from albedo and synthesize realistic soft or hard shadows under arbitrary lighting conditions. NeRFactor is able to recover convincing 3D models for free-viewpoint relighting in this challenging and underconstrained capture setup for both synthetic and real scenes. Qualitative and quantitative experiments show that NeRFactor outperforms classic and deep learning-based state of the art across various tasks. Our code and data are available at people.csail.mit.edu/xiuming/projects/nerfactor/.
Citation Graph
(Double click on nodes to open corresponding papers' pages)
(Double click on nodes to open corresponding papers' pages)
* Showing citation graph for papers within our database. Data retrieved from Semantic Scholar. For full citation graphs, visit ConnectedPapers.