Modulated Periodic Activations for Generalizable Local Functional Representations
Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, Manmohan Chandraker
4/8/2021
Keywords: Generalization, Compression, Fundamentals, Global Conditioning, Hypernetwork/Meta-learning, Positional Encoding
Venue: ICCV 2021
Bibtex:
@inproceedings{mehta2021modulated,
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
author = {Ishit Mehta and Michael Gharbi and Connelly Barnes and Eli Shechtman and Ravi Ramamoorthi and Manmohan Chandraker},
title = {Modulated Periodic Activations for Generalizable Local Functional Representations},
year = {2021},
url = {http://arxiv.org/abs/2104.03960v1},
entrytype = {inproceedings},
id = {mehta2021modulated}
}
Abstract
Multi-Layer Perceptrons (MLPs) make powerful functional representations for sampling and reconstruction problems involving low-dimensional signals like images,shapes and light fields. Recent works have significantly improved their ability to represent high-frequency content by using periodic activations or positional encodings. This often came at the expense of generalization: modern methods are typically optimized for a single signal. We present a new representation that generalizes to multiple instances and achieves state-of-the-art fidelity. We use a dual-MLP architecture to encode the signals. A synthesis network creates a functional mapping from a low-dimensional input (e.g. pixel-position) to the output domain (e.g. RGB color). A modulation network maps a latent code corresponding to the target signal to parameters that modulate the periodic activations of the synthesis network. We also propose a local-functional representation which enables generalization. The signal's domain is partitioned into a regular grid,with each tile represented by a latent code. At test time, the signal is encoded with high-fidelity by inferring (or directly optimizing) the latent code-book. Our approach produces generalizable functional representations of images, videos and shapes, and achieves higher reconstruction quality than prior works that are optimized for a single signal.
Citation Graph
(Double click on nodes to open corresponding papers' pages)
(Double click on nodes to open corresponding papers' pages)
* Showing citation graph for papers within our database. Data retrieved from Semantic Scholar. For full citation graphs, visit ConnectedPapers.